EFFICIENT SYNTHESIS OF (+) -NOJIRIMYCIN AND (+) -1-DEOXYNOJIRIMYCIN

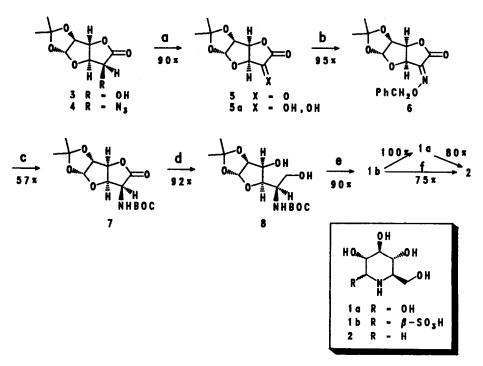
Peter B. Anzeveno* and Laura J. Creemer

Merrell Dow Research Institute, 9550 N. Zionsville Rd. Indianapolis, IN 46268

Summary: (+)-Nojirimycin (1a) and (+)-1-deoxynojirimycin (2) have been prepared from 1,2-0-isopropylidene- α -D-glucofuranurono-6,3-lactone (3) by a route involving stereoselective reductive amination of 5-hydroxy-1,2-0isopropylidene- α -D-xylo-hexofuranurono-6,3-lactone (5a).

(+)-Nojirimycin $(1a)^1$ and (+)-1-deoxynojirimycin $(2)^{1b,2}$ are two naturally occurring aza-sugar antibiotics that are quite potent and specific glycohydrolase (GH) inhibitors.³ Because of this activity, analogs of 2 in particular, have been the focus of much recent attention as potential anti-diabetic⁴ and anti-AIDS agents.⁵

During the course of an in-house program of GH inhibition, several derivatives of 1 and 2 were selected for further study. As a result, we required, efficient syntheses which would be readily amenable to scale-up.


A number of total syntheses of both 1 and 2 have been reported.^{1b, 6-8} These have been by classical chemical^{1b, 6, 7} (glucose-based for the most part^{1b, 6}) or combined chemical and enzymatic⁸ routes. In this letter, we describe practical, highly stereoselective syntheses of 1 and 2 which compete quite effectively with the most efficient of these.^{6e, h, k, m, 8e}

Our route begins with readily available 1,2-O-isopropylidene- α -D-glucofuranurono-6,3-lactone (3)^{9,10} (Scheme 1) and relies on stereo-selective reductive amination of its 5-oxo derivative, 5.

For 3 to be elaborated to 1 and 2, its C-5 hydroxyl must be replaced by a nitrogen function with retention of stereochemistry. This problem was solved independently by Fleet et al.¹⁰ and Lockhoff and Hayauchi¹¹ who prepared gluco-azide 4^{12} from 3 by successive stereospecific S_N2 invertive displacements.

Based on both an inspection of models of 5 and the reported X-ray structure of its stable ketone hydrate 5a, 13 we reasoned that this requisite stereochemistry might be introduced by reductive amination. Reduction of an intermediate imine or oxime should occur preferentially from the less hindered, convex face, providing predominantly gluco-amine.

Scheme 1

Reagents: (a) $(COC1)_2$, DMSO, Et₃N, CH_2C1_2 , $-70^{\circ}C_i$; (b) $H_2NOBn \bullet HC1$, C_6H_6 , reflux; (c) H_2 , 10% Pd/C, (BOC)_2O (1.1 equiv), EtOAc; (d) LAH, THF, 0°C; (e) sat. aq. SO₂, 35-40°C; (f) H_2 , Ra-Ni, Ba(OH)₂ \bullet 8H₂O, H_2O .

Of several reported methods^{9,14} for the preparation of ketone hydrate 5a, the best⁹ is oxidation of 3 with a 10-fold excess of activated MnO₂. In our hands, yields of 5a by this procedure were variable and usually low. We investigated several other oxidation methods and found Swern conditions (oxalyl chloride, DMSO, Et_3N , CH_2Cl_2 , -70°C) to be the most convenient and reliable, giving 5a in 90% yield.

Treatment of 5a with O-benzylhydroxylamine hydrochloride in refluxing benzene, with azeotropic removal of water, gives crystalline O-benzyloxime 6^{15} in 95% yield as a single oxime isomer.¹⁶ This was shown by X-ray analysis to be the E-isomer, i.e.,that in which the N-O bond is syn to the carbohydrate framework.

When oxime 6 was hydrogenated over 10% Pd on carbon in the presence of BOC-anhydride,¹⁷ BOC-protected gluco-amine 7^{18} was produced in modest yield (~40%) and <u>no</u> amine product of *ido* configuration was observed. In attempts to increase this yield, we studied the hydrogenation varying catalyst, solvent, hydrogen pressure and reaction temperature. Under no conditions did we see any *ido*-amine products. This contrasts with all previous syntheses of 1 and 2 that relied on reductive amination of acyclic ketone intermediates to introduce nitrogen.^{1b, 6a, h} In each case, mixtures of *gluco* and *ido* compounds were produced.

Thus far, best results are obtained using either 10% Pd on carbon or $Pd(OH)_2$ on carbon as catalyst (25% by weight of 6) and hydrogenating at 50 psi in ethyl acetate containing 1.1 mol of BOC-anhydride/mol of 6. In this way, yields of BOC-amino-lactone 7 averaging 57% are obtained.

Reduction of 7 with LAH in THF at 0°C proceeds smoothly, affording BOC-amino-alcohol 8 in 92% yield. Treatment of 8 with saturated aq. SO_2 at 35-40°C gives a 90% yield of nojirimycin bisulfite (1b), identical to that obtained from natural 1a.

As reported, ^{1b,7b} (+)-nojirimycin (1a) is obtained in quantitative yield from 1b by treatment with Dowex 1X2 basic ion exchange resin. (+)-1-Deoxynojirimycin (2) is obtained in 75% yield directly from 1b by hydrogenation over Raney-Ni in the presence of barium hydroxide.¹⁹

In summary, reductive amination of 5 represents an efficient approach to 5-amino-5-deoxy-glucofuranoses. By our route, (+)-nojirimycin (1a) and (+)-1-deoxynojirimycin (2) can be prepared in five and six steps from lactone 3, in overall yields of 40 and 30%, respectively.

Acknowledgments: The authors thank Dr. Michael Whalon and Mr. Gary Ruba of MDRI for the spectral and optical data and Dr. John Huffman of The Indiana University Department of Chemistry-Molecular Structure Center, Bloomington, IN, for X-ray analysis of 6.

References and Notes

- (a) Ishida, N.; Kumagai, K.; Tsuroka, T.; Yumoto, H.J. Antibiot. Ser. A 1967, 20, 66. (b) Inouye, S.; Tsuroka, T.; Ito, T.; Niida, T. Tetrahedron 1968, 24, 2125.
- Tetrahedron 1968, 24, 2125.
 (a) Yagi, M.; Kouno, T.; Aoyagi, Y.; Murai, H. Nippon Nogei Kagaku Kaishi 1976, 50, 571. (b) Schmidt, D.D.; Frommer, W.; Muller, L.; Truscheit, E. Naturwissenschaften 1979, 66, 584. (c) Daigo, K.; Inamori, Y.; Takemoto, T. Chem. Pharm. Bull. 1986, 34, 2243.
- (a) Truscheit, E.; Frommer, W.; Junge, B.; Muller, L.; Schmidt, D.D.; Wingender, W. Angew. Chem. Int. Ed. Engl. 1981, 20, 744. (b) Fellows, L.E. Chem. Br. 1987, 23, 842. (c) Evans, S. V.; Fellows, L.E.; Shing, T.K.M.; Fleet, G.W.J. Phytochemistry 1985, 24, 1953. (d) Fleet, G.W.J. Spec. Publ. R. Soc. Chem. 1988, 65 (Top. Med. Chem), 149.
- (a) Liu, P.S.; Rhinehart, B.L.; 191st National Meeting of the American Chemical Society, April 13-18, 1986, New York, NY; Abstract MEDI 72.
 (b) Rhinehart, B.L.; Robinson, K.M.; Liu, P.S.; Payne, A.J.; Wheatley, M.E.; Wagner, S.R. J. Pharmacol. Exp. Therap. 1987, 241, 915. (c) Dimitriadis, G.D.; Tessari, P.; Go, V.L.W.; Gerich, J.E. Metabolism 1985, 34, 261.
- 5. Gruters, R.A.; Neefjes, J.J.; Tersmette, R.E.; de Goede, R.E.Y.; Tulp, A.; Huisman, H.G.; Miedema, F.; Ploegh, H.L. Nature 1987, 330, 74.
- 6. (a) Saeki, H.; Ohki, E. Chem Pharm. Bull. 1968, 16, 2477. (b) Klemer, A.; Hofmeister, U.; Lemmes, R. Carbohydr. Res. 1979, 68, 391.
 (c) Paulsen, H.; Todt, K. Adv. Carbohydr. Chem. 1968, 23, 115.
 (d) Bernotas, R.C.; Ganem, B. Tetrahedron Lett. 1984, 25, 165.

- (e) Bernotas, R.C.; Ganem, B. Ibid. 1985, 26, 1123. (f) Setoi, H.;
- Takeno, H.; Hashimoto, M. Chem. Pharm. Bull., 1986, 34, 2642.
- (g) Paulsen, H.; Sangster, I.; Heyns, K. Chem. Ber. **1967**, 100, 802. (h) Tsuda, Y.; Okuno, Y.; Kanemitsu, K. Heterocycles **1988**, 27, 63.
- (i) Broxterman, H.J.G.; van der Marel, G.A.; Neefjes, J.J.; Ploegh, H.L.; van Boom, J.H. Recl. Trav. Chim. Pays-Bas 1987, 106, 571.
- (j) Schmidt, R.R.; Michel, J.; Rucker, E. Liebigs Ann. Chem. 1989, 423.
- (k) Rajanikanth, B.; Seshadri, R. Tetrahedron Lett. 1989, 30, 755.
- (1) Chida, N.; Furuno, Y.; Ogawa, S. J. Chem. Soc., Chem. Commun. 1989, 1230.
- (m) Beaupere, D.; Stasik, B.; Uzan, R.; Demailly, G. Carbohydr. Res. 1989, 191, 163.
- 7. (a) Iida, H.; Yamazaki, N.; Kibayashi, C. J. Org. Chem. 1987, 52, 3337.
 (b) Vasella, A.; Voeffray, R. Helv. Chim. Acta 1982, 65, 1134.
 - (c) Ikota, N. Heterocycles 1989, 29, 1469.
- 8. (a) Ziegler, T.; Straub, A.; Effenberger, F. Angew. Chem. Int. Ed. Engl. 1988, 27, 716. (b) Pederson, R.L.; Kim, M.-J.; Wong, C.-H. Tetrahedron Lett. 1988, 29, 4645. (c) Pederson, R.L.; Wong, C.-H. Heterocycles, 1989, 28, 477. (d) Von der Osten, C.H.; Sinskey, A.J.; Barbas, C.F., III; Pederson, R.L.; Wang, Y.-F.; Wong, C.-H. J. Am. Chem. Soc., 1989, 111, 3924. (e) Kinast, G.; Schedel, M. Angew, Chem. Int. Ed. Engl. 1981, 20, 805
- 9. Kitihara, T.; Ogawa, T.; Naganuma, T.; Matsui, M. Agr. Biol Chem. 1974, 38, 2189.
- (a) Bashyal, B.P.; Chow, H.-F.; Fleet, G.W.J. Tetrahedron Lett. 1986, 27, 3205. (b) Bashyal, B.P.; Chow, H.-F.; Fellows, L.E.; Fleet, G.W.J., Tetrahedron 1987. 43, 415.
- G.W.J., Tetrahedron 1987, 43, 415.
 11. Lockhoff, O.; Hayauchi, Y. Ger. Offen. DE 3,628,486, Feb 25, 1988; Chem. Abstr. 1988, 109, 129592t.
- 12. Schweng, J.; Zbiral, E. Tetrahedron Lett. 1978, 119.
- Sheldrick, B.; Mackie, W.; Akrigg, D. Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1983, C39, 1259.
 (a) Mackie, W.; Perlin, A.S. Can. J. Chem. 1965, 43, 2921. (b)
- 14. (a) Mackie, W.; Perlin, A.S. Can. J. Chem. 1965, 43, 2921. (b) Weidmann, H.; Olbrich, G. Tetrahedron Lett. 1965, 725. (c) Heyns, K.; Alpers, E.; Weyer, J. Chem. Ber. 1968, 101, 4209. (d) Dax, K.; Weidmann, H. Carbohydr. Res. 1972, 25, 363.
- 15. All new compounds reported were fully characterized by IR, ¹H and ¹³C NMR and mass spectrometry. Each gave satisfactory analytical data (C,H,N). Physical data: 6, mp 83-85°C, $[\alpha]_p^{20}$ + 152.9° (c 1.0, CHCl₃); 7, mp 157-159°C, $[\alpha]_p^{20}$ + 60.2° (c 1.0, CHCl₃); 8, mp 115-116°C, $[\alpha]_p^{20}$ + 45.5° (c 0.89, CHCl₃).
- 16. The stereochemical integrity of 6 was shown by its ${}^{1}H$ and ${}^{13}C$ NMR spectra. We had no success in preparing either the O-unsubstituted or O-methyl oxime of 5.
- 17. See Saito, S.; Nakajima, H.; Inaba, M.; Moriwake, T. Tetrahedron Lett. 1989, 30, 837 for the preparation of BOC- protected amines by catalytic hydrogenation of alkyl azides in the presence of BOC-anhydride.
- 18. This compound was identical in all respects to that obtained from azide 4 (prepared by the method of reference 10) by hydrogenation over Pd/C in the presence of BOC-anhydride. The BOC-protected *ido*-amine isomer of 7 (mp 156-157°C_r; $[\alpha]_p^{25}$ + 97.0 (c 2.0, CHCl₃)) was prepared in the same manner from the corresponding *ido*-azide (reference 10). All of our attempts to isolate pure, unprotected amine 7, either as free base or acid salt, by hydrogenating 6 in the absence of BOC-anhydride were unsuccessful.
- 19. Junge, B.; Krause, H.P.; Mueller, L.; Puls, W. U.S. Patent 4,260,622, 07 Apr 1981.

(Received in USA 11 January 1990)